Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Int Immunopharmacol ; 126: 111188, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37995573

RESUMEN

There is a growing amount of research that highlights the significant involvement of metabolic imbalance and the inflammatory response in the advancement of colitis. Arabinose is a naturally occurring bioactive monosaccharide that plays a crucial role in the metabolic processes and synthesis of many compounds in living organisms. However, the more detailed molecular mechanism by which the administration of arabinose alleviates the progression of colitis and its associated carcinogenesis is still not fully understood. In the present study, arabinose is recognized as a significant and inherent protector of the intestinal mucosal barrier through its role in preserving the integrity of tight junctions within the intestines. Also, it is important to note that there is a positive correlation between the severity of inflammatory bowel disease (IBD) and colorectal cancer (CRC), as well as chemically-induced colitis in mice, and lower levels of arabinose in the bloodstream. In two mouse models of colitis, caused by dextran sodium sulfate (DSS) or by spontaneous colitis in IL-10-/- mice, damage to the intestinal mucosa was reduced by giving the mice arabinose. When arabinose is administrated to model with colitis, it sets off a chain of events that help keep the lysosomes together and stop cathepsin B from being released. During the progression of intestinal epithelial injury, this process blocks myosin light chain kinase (MLCK) from damaging tight junctions and causing mitochondrial dysfunction. In summary, the results of the study have provided evidence supporting the beneficial effects of arabinose in mitigating the progression of colitis. This is achieved through its ability to avoid dysregulation of the intestinal barrier. Consequently, arabinose may hold promise as a therapeutic supplementation for the management of colitis.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Arabinosa/uso terapéutico , Arabinosa/metabolismo , Arabinosa/farmacología , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Uniones Estrechas , Mucosa Intestinal , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
2.
ACS Appl Mater Interfaces ; 15(51): 59704-59713, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38087993

RESUMEN

Due to the limited light absorption efficiency of atomic thickness layers and the existence of quenching effects, photodetectors solely made of transition metal dichalcogenides (TMDs) have exhibited an unsatisfactory detection performance. In this article, electret/TMD hybridized devices were proposed by vertically coupling a MoS2 channel and the PTFE film, which reveals an optimized photodetection behavior. Negative charges were generated in the PTFE layer through the corona charging method, akin to applying a negative bias on the MoS2 channel in lieu of a traditional voltage-driven back gate. Under a charging voltage of -6 kV, PTFE/MoS2 devices reveal improved photodetection performance (Rhybrid = 67.95A/W versus Ronly = 3.37 A/W, at 470 nm, 1.20 mW cm-2) and faster recovery speed (τd(hybrid) = 2000 ms versus τd(only) = 2900 ms) compared to those bare MoS2 counterparts. The optimal detection performance (2 orders of magnitude) was obtained when the charging voltage was -2 kV, limited by the minimum of the carrier density in MoS2 channels. This study provides an alternative strategy to optimize optoelectronic devices based on the 2D components through non-voltage-driven gating.

3.
Crit Rev Food Sci Nutr ; : 1-32, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38153262

RESUMEN

NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), a member of the nucleotide-binding domain (NOD) and leucine-rich repeat sequence (LRR) protein (NLR) family, plays an essential role in the inflammation initiation and inflammatory mediator secretion, and thus is also associated with many disease progressions. Food-derived bioactive peptides (FDBP) exhibit excellent anti-inflammatory activity in both in vivo and in vitro models. They are encrypted in plant, meat, and milk proteins and can be released under enzymatic hydrolysis or fermentation conditions, thereby hindering the progression of hyperuricemia, inflammatory bowel disease, chronic liver disease, neurological disorders, lung injury and periodontitis by inactivating the NLRP3. However, there is a lack of systematic review around FDBP, NLRP3, and NLRP3-related diseases. Therefore, this review summarized FDBP that exert inhibiting effects on NLRP3 inflammasome from different protein sources and detailed their preparation and purification methods. Additionally, this paper also compiled the possible inhibitory mechanisms of FDBP on NLRP3 inflammasomes and its regulatory role in NLRP3 inflammasome-related diseases. Finally, the progress of cutting-edge technologies, including nanoparticle, computer-aided screening strategy and recombinant DNA technology, in the acquisition or encapsulation of NLRP3 inhibitory FDBP was discussed. This review provides a scientific basis for understanding the anti-inflammatory mechanism of FDBP through the regulation of the NLRP3 inflammasome and also provides guidance for the development of therapeutic adjuvants or functional foods enriched with these FDBP.

6.
Front Cell Dev Biol ; 11: 1271145, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020922

RESUMEN

Background: Diabetic nephropathy (DN) was considered a severe microvascular complication of diabetes, which was recognized as the second leading cause of end-stage renal diseases. Therefore, identifying several effective biomarkers and models to diagnosis and subtype DN is imminent. Necroptosis, a distinct form of programmed cell death, has been established to play a critical role in various inflammatory diseases. Herein, we described the novel landscape of necroptosis in DN and exploit a powerful necroptosis-mediated model for the diagnosis of DN. Methods: We obtained three datasets (GSE96804, GSE30122, and GSE30528) from the Gene Expression Omnibus (GEO) database and necroptosis-related genes (NRGs) from the GeneCards website. Via differential expression analysis and machine learning, significant NRGs were identified. And different necroptosis-related DN subtypes were divided using consensus cluster analysis. The principal component analysis (PCA) algorithm was utilized to calculate the necroptosis score. Finally, the logistic multivariate analysis were performed to construct the necroptosis-mediated diagnostic model for DN. Results: According to several public transcriptomic datasets in GEO, we obtained eight significant necroptosis-related regulators in the occurrence and progress of DN, including CFLAR, FMR1, GSDMD, IKBKB, MAP3K7, NFKBIA, PTGES3, and SFTPA1 via diversified machine learning methods. Subsequently, employing consensus cluster analysis and PCA algorithm, the DN samples in our training set were stratified into two diverse necroptosis-related subtypes based on our eight regulators' expression levels. These subtypes exhibited varying necroptosis scores. Then, we used various functional enrichment analysis and immune infiltration analysis to explore the biological background, immune landscape and inflammatory status of the above subtypes. Finally, a necroptosis-mediated diagnostic model was exploited based on the two subtypes and validated in several external verification datasets. Moreover, the expression level of our eight regulators were verified in the singe-cell level and glomerulus samples. And we further explored the relationship between the expression of eight regulators and the kidney function of DN. Conclusion: In summary, our necroptosis scoring model and necroptosis-mediated diagnostic model fill in the blank of the relationship between necroptosis and DN in the field of bioinformatics, which may provide novel diagnostic insights and therapy strategies for DN.

8.
Nat Commun ; 14(1): 6384, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821436

RESUMEN

Currently potential preclinical drugs for the treatment of nonalcoholic steatohepatitis (NASH) and NASH-related pathopoiesis have failed to achieve expected therapeutic efficacy due to the complexity of the pathogenic mechanisms. Here we show Tripartite motif containing 26 (TRIM26) as a critical endogenous suppressor of CCAAT/enhancer binding protein delta (C/EBPδ), and we also confirm that TRIM26 is an C/EBPδ-interacting partner protein that catalyses the ubiquitination degradation of C/EBPδ in hepatocytes. Hepatocyte-specific loss of Trim26 disrupts liver metabolic homeostasis, followed by glucose metabolic disorder, lipid accumulation, increased hepatic inflammation, and fibrosis, and dramatically facilitates NASH-related phenotype progression. Inversely, transgenic Trim26 overexpression attenuates the NASH-associated phenotype in a rodent or rabbit model. We provide mechanistic evidence that, in response to metabolic insults, TRIM26 directly interacts with C/EBPδ and promotes its ubiquitin proteasome degradation. Taken together, our present findings identify TRIM26 as a key suppressor over the course of NASH development.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Conejos , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Transducción de Señal , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
Adv Sci (Weinh) ; 10(28): e2302130, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37544908

RESUMEN

Underestimation of the complexity of pathogenesis in nonalcoholic steatohepatitis (NASH) significantly encumbers development of new drugs and targeted therapy strategies. Inactive rhomboid protein 2 (IRHOM2) has a multifunctional role in regulating inflammation, cell survival, and immunoreaction. Although cytokines and chemokines promote IRHOM2 trafficking or cooperate with partner factors by phosphorylation or ubiquitin ligases-mediated ubiquitination to perform physiological process, it remains unknown whether other regulators induce IRHOM2 activation via different mechanisms in NASH progression. Here the authors find that IRHOM2 is post-translationally S-palmitoylated at C476 in iRhom homology domain (IRHD), which facilitates its cytomembrane translocation and stabilization. Fatty-acids challenge can directly promote IRHOM2 trafficking by increasing its palmitoylation. Additionally, the authors identify Zinc finger DHHC-type palmitoyltransferase 3 (ZDHHC3) as a key acetyltransferase required for the IRHOM2 palmitoylation. Fatty-acids administration enhances IRHOM2 palmitoylation by increasing the direct association between ZDHHC3 and IRHOM2, which is catalyzed by the DHHC (C157) domain of ZDHHC3. Meanwhile, a metabolic stresses-triggered increase of ZDHHC3 maintains palmitoylated IRHOM2 accumulation by blocking its ubiquitination, consequently suppressing its ubiquitin-proteasome-related degradation mediated by tripartite motif containing 31 (TRIM31). High-levels of ZDHHC3 protein abundance positively correlate with the severity of NASH phenotype in patient samples. Hepatocyte-specific dysfunction of ZDHHC3 significantly inhibits palmitoylated IRHOM2 deposition, therefore suppressing the fatty-acids-mediated hepatosteatosis and inflammation in vitro, as well as NASH pathological phenotype induced by two different high-energy diets (HFHC & WTDF) in the in vivo rodent and rabbit model. Inversely, specific restoration of ZDHHC3 in hepatocytes markedly provides acceleration over the course of NASH development via increasing palmitoylation of IRHOM2 along with suppression of ubiquitin degradation. The current work uncovers that ZDHHC3-induced palmitoylation is a novel regulatory mechanism and signal that regulates IRHOM2 trafficking, which confers evidence associating the regulation of palmitoylation with NASH progression.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Conejos , Lipoilación , Inflamación/metabolismo , Fosforilación , Ácidos Grasos , Ubiquitinas/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
10.
Metabolism ; 146: 155657, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37422021

RESUMEN

BACKGROUND AND RATIONALE: Activation of hepatic stellate cells (HSCs), the central event of fibrosis, indicates the severe stage of non-alcoholic fatty liver disease (NAFLD). MicroRNAs (miRNAs) participate in this process. Treatment with a sodium-glucose cotransporter 2 inhibitor (SGLT2i) alleviates liver fibrosis in patients with type 2 diabetes and NAFLD; however, the role of SGLT2i in ameliorating liver fibrosis in NAFLD by regulating miRNAs remains unclear. APPROACH AND RESULTS: We monitored the expression of NAFLD-associated miRNAs in the livers of two NAFLD models and observed high expression of miR-34a-5p. miR-34a-5p was highly expressed in mouse primary liver non-parenchymal cells and LX-2 HSCs, and this miRNA was positively correlated with alanine transaminase levels in NAFLD models. Overexpression of miR-34a-5p enhanced LX-2 activation, whereas its inhibition prevented HSCs activation by regulating the TGFß signaling pathway. The SGLT2i empagliflozin significantly downregulated miR-34a-5p, inhibited the TGFß signaling pathway, and ameliorated hepatic fibrosis in NAFLD models. Subsequently, GREM2 was identified as a direct target of miR-34a-5p through database prediction and a dual-luciferase reporter assay. In LX-2 HSCs, the miR-34a-5p mimic and inhibitor directly downregulated and upregulated GREM2, respectively. Overexpressing GREM2 inactivated the TGFß pathway whereas GREM2 knockdown activated it. Additionally, empagliflozin upregulated Grem2 expression in NAFLD models. In methionine- and choline-deficient diet-fed ob/ob mice, a fibrosis model, empagliflozin downregulated miR-34a-5p and upregulated Grem2 to improve liver fibrosis. CONCLUSIONS: Empagliflozin ameliorates NAFLD-associated fibrosis by downregulating miR-34a-5p and targeting GREM2 to inhibit the TGFß pathway in HSCs.


Asunto(s)
Diabetes Mellitus Tipo 2 , MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Células Estrelladas Hepáticas/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Diabetes Mellitus Tipo 2/metabolismo , Hígado/metabolismo , Fibrosis , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
11.
Carbohydr Polym ; 311: 120718, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37028867

RESUMEN

Curcumin (CUR) has been discovered to have many biological activities, including anti-inflammatory, anti-cancer, anti-oxygenation, anti-human immunodeficiency virus, anti-microbial and exhibits a good effect on the prevention and treatment of many diseases. However, the limited properties of CUR, including the poor solubility, bioavailability and instability caused by enzymes, light, metal irons, and oxygen, have compelled researchers to turn their attention to drug carrier application to overcome these drawbacks. Encapsulation may provide potential protective effects to the embedding materials and/or have a synergistic effect with them. Therefore, nanocarriers, especially polysaccharides-based nanocarriers, have been developed in many studies to enhance the anti-inflammatory capacity of CUR. Consequently, it's critical to review current advancements in the encapsulation of CUR using polysaccharides-based nanocarriers, as well as further study the potential mechanisms of action where polysaccharides-based CUR nanoparticles (the complex nanoparticles/Nano CUR-delivery systems) exhibit their anti-inflammatory effects. This work suggests that polysaccharides-based nanocarriers will be a thriving field in the treatment of inflammation and inflammation-related diseases.


Asunto(s)
Curcumina , Nanopartículas , Humanos , Curcumina/farmacología , Portadores de Fármacos , Polisacáridos/farmacología , Inflamación/tratamiento farmacológico
12.
Acta Pharm Sin B ; 13(3): 1071-1092, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36970206

RESUMEN

Nowadays potential preclinical drugs for the treatment of nonalcoholic steatohepatitis (NASH) have failed to achieve expected therapeutic efficacy because the pathogenic mechanisms are underestimated. Inactive rhomboid protein 2 (IRHOM2), a promising target for treatment of inflammation-related diseases, contributes to deregulated hepatocyte metabolism-associated nonalcoholic steatohepatitis (NASH) progression. However, the molecular mechanism underlying Irhom2 regulation is still not completely understood. In this work, we identify the ubiquitin-specific protease 13 (USP13) as a critical and novel endogenous blocker of IRHOM2, and we also indicate that USP13 is an IRHOM2-interacting protein that catalyzes deubiquitination of Irhom2 in hepatocytes. Hepatocyte-specific loss of the Usp13 disrupts liver metabolic homeostasis, followed by glycometabolic disorder, lipid deposition, increased inflammation, and markedly promotes NASH development. Conversely, transgenic mice with Usp13 overexpression, lentivirus (LV)- or adeno-associated virus (AAV)-driven Usp13 gene therapeutics mitigates NASH in 3 models of rodent. Mechanistically, in response to metabolic stresses, USP13 directly interacts with IRHOM2 and removes its K63-linked ubiquitination induced by ubiquitin-conjugating enzyme E2N (UBC13), a ubiquitin E2 conjugating enzyme, and thus prevents its activation of downstream cascade pathway. USP13 is a potential treatment target for NASH therapy by targeting the Irhom2 signaling pathway.

13.
Cell Death Dis ; 14(2): 105, 2023 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-36774340

RESUMEN

Copper is a vital mineral, and an optimal amount of copper is required to support normal physiologic processes in various systems, including the cardiovascular system. Over the past few decades, copper-induced cell death, named cuproptosis, has become increasingly recognized as an important process mediating the pathogenesis and progression of cardiovascular disease (CVD), including atherosclerosis, stroke, ischemia-reperfusion injury, and heart failure. Therefore, an in-depth understanding of the regulatory mechanisms of cuproptosis in CVD may be useful for improving CVD management. Here, we review the relationship between copper homeostasis and cuproptosis-related pathways in CVD, as well as therapeutic strategies addressing copper-induced cell death in CVD.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Humanos , Cobre , Muerte Celular , Homeostasis
14.
Biosci Trends ; 17(1): 21-37, 2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36682800

RESUMEN

Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease globally and seriously increases the public health burden, affecting approximately one quarter of the world population. Recently, RNA binding proteins (RBPs)-related pathogenesis of MAFLD has received increasing attention. RBPs, vividly called the gate keepers of MAFLD, play an important role in the development of MAFLD through transcription regulation, alternative splicing, alternative polyadenylation, stability and subcellular localization. In this review, we describe the mechanisms of different RBPs in the occurrence and development of MAFLD, as well as list some drugs that can improve MAFLD by targeting RBPs. Considering the important role of RBPs in the development of MAFLD, elucidating the RNA regulatory networks involved in RBPs will facilitate the design of new drugs and biomarkers discovery.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , ARN no Traducido/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo , Citoplasma/metabolismo
15.
ACS Appl Mater Interfaces ; 15(2): 3307-3316, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36596237

RESUMEN

Van der Waals semiconductors have been really confirmed in two-dimensional (2D) layered systems beyond the traditional limits of lattice-matching requirements. The extension of this concept to the 1D atomic level may generate intriguing physical functionalities due to its non-covalent bonding surface. However, whether the curvature of the lattice in such rolled-up structures affects their optoelectronic features or the performance of devices established on them remains an open question. Here, MoS2-based nanoscrolls were obtained by virtue of an alkaline solution-assisted method and the 0D/1D (BaTiO3/MoS2) strategy to tune their optoelectronic properties and improve the light sensing performance was explored. The capillary force generated by a drop of NaHCO3 solution could drive the delamination of nanosheets from the underlying substrate and a spontaneous rolling-up process. The package of BaTiO3 particles in MoS2 nanoscrolls has been evident by TEM image, and the optical characterizations were mirrored via micro-Raman spectroscopy and photoluminescence. These bare MoS2 nanoscrolls reveal a reduced photoresponse compared to the plane structures due to the curvature of the lattice. However, such BaTiO3/MoS2 nanoscrolls exhibit a significantly improved photodetection (Rhybrid = 73.9 A/W vs Ronly = 1.1 A/W and R2D = 1.5 A/W at 470 nm, 0.58 mW·cm-2), potentially due to the carrier extraction/injection occurring between BaTiO3 and MoS2. This study thereby provides an insight into 1D van der Waals material community and demonstrates a general approach to fabricate high-performance 1D van der Waals optoelectronic devices.

16.
Arch Physiol Biochem ; 129(5): 1168-1176, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33950771

RESUMEN

Exosomes are a kind of nanoscale extracellular vesicles with diameters of 30-100 nm and act as intracellular communication vehicles to influence cellular activities. Emerging pieces of evidence have indicated that exosomes play important roles in inflammation. However, the biological roles of plasma exosomes in acute myocardial infarction (AMI) patients have remained largely unexplored. In the current study, we found the plasma exosome levels were notably increased in patients with AMI in comparison with healthy controls (HCs), and AMI exosomes could induce endothelial cell injury. Furthermore, our data demonstrated that AMI exosomes triggered a pro-inflammatory immune response, at least partly depending on the activation of the NF-ĸB signalling. Together, AMI exosomes have pro-inflammatory properties and play a significant role in inflammation in AMI patients.


Asunto(s)
Exosomas , Infarto del Miocardio , Humanos , Transducción de Señal , Inmunidad , Inflamación
17.
Hepatology ; 77(1): 124-143, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35429173

RESUMEN

BACKGROUND AIMS: As a global health threat, NASH has been confirmed to be a chronic progressive liver disease that is strongly associated with obesity. However, no approved drugs or efficient therapeutic strategies are valid, mainly because its complicated pathological processes is underestimated. APPROACH RESULTS: We identified the RING-type E3 ubiquitin transferase-tripartite motif-containing protein 31 (TRIM31), a member of the E3 ubiquitin ligases family, as an efficient endogenous inhibitor of transforming growth factor-beta-activated kinase 1 (mitogen-activated protein kinase kinase kinase 7; MAP3K7), and we further confirmed that TRIM31 is an MAP3K7-interacting protein and promotes MAP3K7 degradation by enhancing ubiquitination of K48 linkage in hepatocytes. Hepatocyte-specific Trim31 deletion blocks hepatic metabolism homeostasis, concomitant with glucose metabolic syndrome, lipid accumulation, up-regulated inflammation, and dramatically facilitates NASH progression. Inversely, transgenic overexpression, lentivirus, or adeno-associated virus-mediated Trim31 gene therapy restrain NASH in three dietary mice models. Mechanistically, in response to metabolic insults, TRIM31 interacts with MAP3K7 and conjugates K48-linked ubiquitination chains to promote MAP3K7 degradation, thus blocking MAP3K7 abundance and its downstream signaling cascade activation in hepatocytes. CONCLUSIONS: TRIM31 may serve as a promising therapeutic target for NASH treatment and associated metabolic disorders.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Animales , Ratones , Quinasas Quinasa Quinasa PAM/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Humanos , Proteínas de Motivos Tripartitos/metabolismo
18.
Cells ; 11(22)2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36429065

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease spectrum associated with insulin resistance (IR), from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC). O-GlcNAcylation is a posttranslational modification, regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Abnormal O-GlcNAcylation plays a key role in IR, fat deposition, inflammatory injury, fibrosis, and tumorigenesis. However, the specific mechanisms and clinical treatments of O-GlcNAcylation and NAFLD are yet to be elucidated. The modification contributes to understanding the pathogenesis and development of NAFLD, thus clarifying the protective effect of O-GlcNAcylation inhibition on liver injury. In this review, the crucial role of O-GlcNAcylation in NAFLD (from NAFL to HCC) is discussed, and the effect of therapeutics on O-GlcNAcylation and its potential mechanisms on NAFLD have been highlighted. These inferences present novel insights into the pathogenesis and treatments of NAFLD.


Asunto(s)
Carcinoma Hepatocelular , Resistencia a la Insulina , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Carcinoma Hepatocelular/complicaciones , Neoplasias Hepáticas/complicaciones , Procesamiento Proteico-Postraduccional
19.
Int Immunopharmacol ; 113(Pt B): 109395, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36375322

RESUMEN

Obesity is a major predictive factor for the diabetic nephropathy (DN). However, the precise mechanism and therapeutic approach still require to be investigated. Cynapanosides A (CPS-A) is a glycoside derived from the Chinese drug Cynanchum paniculatum that has numerous pharmacological activities, but its regulatory function on obesity-induced kidney disease is still obscure. In the present study, we attempted to explore the renoprotective effects of CPS-A on the established DN in high fat diet (HFD)-fed mice, and the underlying mechanisms. We initially found that CPS-A significantly ameliorated the obesity and metabolic syndrome in mice with HFD feeding. Mice with HFD-induced DN exerted renal dysfunctions, indicated by the elevated functional parameters, including up-regulated blood urea nitrogen (BUN), urine albumin and creatinine, which were significantly attenuated by CPS-A in obese mice. Moreover, histological changes including glomerular enlargement, sclerosis index and collagen deposition in kidney of obese mice were detected, while being strongly ameliorated by CPS-A. Additionally, podocyte loss induced by HFD was also markedly mitigated in mice with CPS-A supplementation. HFD feeding also led to lipid deposition and inflammatory response in renal tissues of obese mice, whereas being considerably attenuated after CPS-A consumption. Intriguingly, we found that tripartite motif-containing protein 31 (TRIM31) signaling might be a crucial mechanism for CPS-A to perform its renoprotective functions in mice with DN. The anti-inflammatory, anti-fibrotic and anti-dyslipidemia capacities of CPS-A were confirmed in the mouse podocytes under varying metabolic stresses, which were however almost abolished upon TRIM31 ablation. These data elucidated that TRIM31 expression was largely required for CPS-A to perform its renoprotective effects. Collectively, our study is the first to reveal that CPS-A may be a promising therapeutic strategy for the treatment of obesity-induced DN or associated kidney disease.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Podocitos , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Ratones Obesos , Fibrosis , Inflamación/metabolismo , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Lípidos/uso terapéutico , Ratones Endogámicos C57BL , Diabetes Mellitus/patología
20.
Front Cell Infect Microbiol ; 12: 935280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325468

RESUMEN

The use of non-steroidal anti-inflammatory drugs (NSAIDs) in patients with coronavirus disease 2019 (COVID-19) has raised great concerns. The effect of NSAIDs on the clinical status of COVID-19 remains in question. Therefore, we performed a post-hoc analysis from the ORCHID trial. Patients with COVID-19 from the ORCHID trial were categorized into two groups according to NSAID use. The 28-day mortality, hospitalized discharge, and safety outcomes with NSAIDs for patients with COVID-19 were analyzed. A total of 476 hospitalized patients with COVID-19 were included; 412 patients (86.5%) did not receive NSAIDs, while 64 patients (13.5%) took NSAIDs as regular home medication. Patients who took NSAIDs did not have a significant increase in the risk of 28-day mortality (fully adjusted: hazard ratio [HR]: 1.12, 95% CI: 0.52-2.42) in the Cox multivariate analysis. Moreover, NSAIDs did not decrease hospital discharge through 28 days (fully adjusted: HR: 1.02, 95% CI: 0.75-1.37). The results of a meta-analysis including 14 studies involving 48,788 patients with COVID-19 showed that the use of NSAIDs had a survival benefit (summary risk ratio [RR]: 0.70, 95% CI: 0.54-0.91) and decreased the risk of severe COVID-19 (summary: RR: 0.79, 95% CI: 0.71-0.88). In conclusion, the use of NSAIDs is not associated with worse clinical outcomes, including 28-day mortality or hospital discharge in American adult hospitalized patients with COVID-19. Based on current evidence, the use of NSAIDs is safe and should not be cautioned against during the COVID-19 pandemic. Ongoing trials should further assess in-hospital treatment with NSAIDs for patients with COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Adulto , Humanos , Antiinflamatorios no Esteroideos/uso terapéutico , Hospitalización , Pandemias , Metaanálisis como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...